Разлика между тригонална равнина и тригонална пирамида

Разлика между тригонална равнина и тригонална пирамида
Разлика между тригонална равнина и тригонална пирамида

Видео: Разлика между тригонална равнина и тригонална пирамида

Видео: Разлика между тригонална равнина и тригонална пирамида
Видео: Ibridazione dell'atomo di Carbonio. Simulazioni ed animazioni in 3D e video in 4K. UNICO!! 2024, Декември
Anonim

Тригонален равнинен срещу тригонален пирамидален

Тригонална планарна и тригонална пирамидална са две геометрии, които използваме, за да назовем триизмерното разположение на атомите на молекула в пространството. Има и други видове геометрии. Линейни, огънати, тетраедрични, октаедрични са някои от често срещаните геометрии. Атомите са подредени по този начин, за да се сведе до минимум отблъскването връзка-връзка, отблъскването връзка-несподелена двойка и отблъскването несподелена двойка-несподелена двойка. Молекулите с еднакъв брой атоми и електронни несподелени двойки са склонни да поемат една и съща геометрия. Следователно можем да определим геометрията на една молекула, като вземем предвид някои правила. Теорията на VSEPR е модел, който може да се използва за прогнозиране на молекулярната геометрия на молекулите, като се използва броя на валентните електронни двойки. Експериментално молекулярната геометрия може да се наблюдава с помощта на различни спектроскопски методи и методи на дифракция.

Тригонална равнина

Тригоналната планарна геометрия е показана от молекули с четири атома. Има един централен атом, а другите три атома (периферни атоми) са свързани с централния атом по начин, че са в ъглите на триъгълник. В централния атом няма несподелени двойки; следователно при определяне на геометрията се взема предвид само отблъскването връзка-връзка от групите около централния атом. Всички атоми са в една равнина; следователно, геометрията се нарича „равнинна“. Молекула с идеална тригонална равнинна геометрия има ъгъл от 120°o между периферните атоми. Такива молекули ще имат същия тип периферни атоми. Борен трифлуорид (BF3) е пример за идеална молекула с тази геометрия. Освен това може да има молекули с различни типове периферни атоми. Например може да се вземе COCl2. В такава молекула ъгълът може да бъде малко по-различен от идеалната стойност в зависимост от вида на атомите. Освен това, карбонатът, сулфатите са два неорганични аниона, показващи тази геометрия. Освен атоми в периферно местоположение, може да има лиганди или други сложни групи около централния атом в тригонална равнинна геометрия. C(NH2)3+ е пример за такова съединение, където три NH 2 групите са свързани към централен въглероден атом.

Триъгълна пирамида

Тригоналната пирамидална геометрия също се показва от молекули с четири атома или лиганди. Централният атом ще бъде на върха, а три други атома или лиганди ще бъдат в една основа, където са в трите ъгъла на триъгълника. В централния атом има една несподелена електронна двойка. Лесно е да се разбере тригоналната равнинна геометрия, като се визуализира като тетраедрична геометрия. В този случай и трите връзки и несподелената двойка са в четирите оси на тетраедричната форма. Така че, когато позицията на несподелената двойка се пренебрегне, останалите връзки правят тригоналната пирамидална геометрия. Тъй като отблъскването несподелена двойка-връзка е по-голямо от отблъскването връзка-връзка, свързаните три атома и несподелената двойка ще бъдат възможно най-далеч един от друг. Ъгълът между атомите ще бъде по-малък от ъгъла на тетраедър (109o). Обикновено ъгълът в триъгълна пирамида е около 107o Амоняк, хлоратен йон и сулфитен йон са някои от примерите, показващи тази геометрия.

Каква е разликата между тригонална равнина и тригонална пирамида?

• В тригоналната равнина няма несподелена двойка електрони в централния атом. Но в тригоналната пирамида има една несподелена двойка в централния атом.

• Ъгълът на свързване в тригоналната равнина е около 120o, а в тригоналната пирамида е около 107o.

• В тригоналната равнина всички атоми са в една равнина, но в тригоналната пирамида те не са в една равнина.

• В тригоналната равнина има само отблъскване връзка-връзка. Но в тригоналната пирамида има отблъскване на връзка-връзка и връзка-несподелена двойка.

Препоръчано: